Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications.
نویسندگان
چکیده
The use of inorganic-based flexible piezoelectric thin films for biomedical applications has been actively reported due to their advantages of highly piezoelectric, pliable, slim, lightweight, and biocompatible properties. The piezoelectric thin films on plastic substrates can convert ambient mechanical energy into electric signals, even responding to tiny movements on corrugated surfaces of internal organs and nanoscale biomechanical vibrations caused by acoustic waves. These inherent properties of flexible piezoelectric thin films enable to develop not only self-powered energy harvesters for eliminating batteries of bio-implantable medical devices but also sensitive nanosensors for in vivo diagnosis/therapy systems. This paper provides recent progresses of flexible piezoelectric thin-film harvesters and nanosensors for use in biomedical fields. First, developments of flexible piezoelectric energy-harvesting devices by using high-quality perovskite thin film and innovative flexible fabrication processes are addressed. Second, their biomedical applications are investigated, including self-powered cardiac pacemaker, acoustic nanosensor for biomimetic artificial hair cells, in vivo energy harvester driven by organ movements, and mechanical sensor for detecting nanoscale cellular deflections. At the end, future perspective of a self-powered flexible biomedical system is also briefly discussed with relation to the latest advancements of flexible electronics.
منابع مشابه
VIBRATION ENERGY HARVESTERS OF LEAD-FREE (K,Na)NbO3 PIEZOELECTRIC THIN FILMS
In this study, we fabricated piezoelectric energy harvesters composed of lead-free (K,Na)NbO3 (KNN) thin films and compared the power generation performance with PZT-thin film energy harvesters. Both of the piezoelectric thin films were deposited on Pt/Ti/Si cantilevers by rf-sputtering. The KNN and PZT thin films had perovskite structure, and showed the relative dielectric constants of 744 and...
متن کاملPiezoelectric thin films: an integrated review of transducers and energy harvesting
Piezoelectric thin films offer a number of advantages in various applications, such as high energy density harvesters, a wide dynamic range, and high sensitivity sensors, as well as large displacement and low power consumption actuators. This review covers the available material forms and applications of piezoelectric thin films: lead zirconate titanate (PZT)-based thin films, lead-free piezoel...
متن کاملStretchable piezoelectric nanocomposite generator
Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricit...
متن کاملA Self-Powered Insole for Human Motion Recognition
Biomechanical energy harvesting is a feasible solution for powering wearable sensors by directly driving electronics or acting as wearable self-powered sensors. A wearable insole that not only can harvest energy from foot pressure during walking but also can serve as a self-powered human motion recognition sensor is reported. The insole is designed as a sandwich structure consisting of two wavy...
متن کاملVertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays
PVDF and P(VDF-TrFE) nano- and micro- structures have been widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced healthcare materials
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2015